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Motivation – Big Picture

Reliable prediction of large-
scale fire development
Predictive capabilities for 
solid-phase pyrolysis lags 
gas-phase

– “Practical” or “real-world”
materials poorly understood

– Many models specific to one 
class of materials



Objectives

1) Develop generalized pyrolysis model
– Thermoplastic, charring, intumescent, smolder
– Practical/real-world materials

2) Develop technique to estimate model input 
parameters from existing laboratory tests

– Fire tests (Cone Calorimeter, FPA)
– Thermal analysis (TGA, DSC)



Presentation Outline

Motivation
Objectives
Generalized pyrolysis model description
Generalized pyrolysis model application
– Oxidative pyrolysis of white pine
– Thermal pyrolysis of polypropylene
– Heating and swelling of intumescent coating

Concluding remarks



Generalized Pyrolysis Model

Decomposing solid treated as coupled 
gaseous and condensed phases
1D conservation equations solved for
– Gas and solid mass
– Gas and solid species
– Gas and solid energy
– Gas momentum (Darcy’s law)

Volume change handled by variable 
grid spacing

Surface regression



Generalized Pyrolysis Model

User may specify any number of
– Distinct layers
– Solid and gaseous species
– Solid and gaseous reactions

Physics include
– Volume change (swelling/surface regression)
– In-depth radiation absorption, radiative transfer across pores
– Darcy flow through porous media (pressure solver)
– Penetration of ambient oxygen into decomposing solid and 

its effect on gaseous and solid reactions



White Pine Oxidative Pyrolysis –
Experimental Data

Ohlemiller, Kashiwagi, Werner - C+F v69 (1987)
– 3.8 cm cubes irradiated @ 40 kW/m2 (natural convection)
– O2 ranged from 0% to 21% by volume
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White Pine Oxidative Pyrolysis –
Numerical Simulation

Modeling approach
– 4 solid species: wet wood, dry wood, char, ash
– 4 solid reactions: drying, dry wood pyrolysis, dry wood 

oxidation, char oxidation
– 1 gas-phase reaction: oxidation of pyrolysate
– 5 gaseous species: N2, O2, H2O, pyrolysate, products

The challenge
– At least 40 unknown model parameters must be specified!

The solution
– Parameters estimated from experimentally measured MLR 

and T using genetic algorithm-based optimization



White Pine – Comparison of 
Measured and Modeled T

Modeled temperatures match experimental data quite 
well for pyrolysis under N2:

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Time (s)

T
em

pe
ra

tu
re

 (°
C

)

0 mm - Exp.
0 mm - Model
5 mm - Exp.
5 mm - Model
10 mm - Exp.
10 mm - Model



White Pine Oxidative Pyrolysis –
Predictions/Measurements in N2

Mass loss rate under N2:
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White Pine Oxidative Pyrolysis –
Model Predictions

Model captures experimentally-observed increase in 
MLR and surface T with increasing O2 concentration

Mass loss rateSurface temperature
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White Pine Oxidative Pyrolysis –
Predictions/Measurements in Air

Surface temperature and MLR (21% O2)
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Polypropylene Pyrolysis –
Effect of Thickness
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Heating and Swelling of an 
Intumescent Coating

Experiment - Griffin et al., JFS v23 (2005)  
– Cone Calorimeter 

• 2.7 mm intumescent coating applied over steel substrate
• Irradiated at 90 kW/m2 (Tsubs and δ measured)

– Thermogravimetric analysis (TGA)

Modeling approach
– 5 solid species
– 3 condensed-phase reactions, including intumescence
– 26 model parameters determined by genetic algorithm 

optimization



Intumescent Coating –
Model Results (TGA)
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Intumescent Coating –
Model Results (Cone Calorimeter)
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Concluding Remarks

Pyrolysis model simulates well multiple materials
Material property estimation via genetic algorithm 
optimization seems to “work” even for search spaces 
with 20+ adjustable parameters

Future work
– Additional materials (composites, charring polymers) 
– Extension to 2D (anisotropy, transition to flaming)
– Predicting real world flame spread and fire growth via 

coupling to CFD code
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